
More on Hashing:
Collisions

See Chapter 20 of the text.

Collisions
Let's do an example -- add some people to a hash table
of size 7.

Name h = hash(name) h%7

Ben 66667 6

Bob 66965 3

Steven -1808493797 -5 -> 2

Cynthia -1392489180 -5 -> 2

Alexa 63347171 6

Jackie -2083773093 -3 -> 4

The first three are simple:

Steven Bob Ben

0 1 2 3 4 5 6

Steven Bob Ben

0 1 2 3 4 5 6

Where do we now add Cynthia, who hashes to index 2?
One answer is to move over until we find a free spot in the
table. Indices 2 and 3 are occupied but 4 is not, so we
insert Cynthia there:

Steven Bob Cynthia Ben

0 1 2 3 4 5 6

We call such a situation, where we want to add an item
to a hashtable at a location that is already occupied, a
"collision". One sure way to get a collision is to have
two object have the same hash values.

If we add Alexa, who also hashes to 6, to the table, we
see she collides with Ben. There is no room to the right
of Ben, so we wrap around and put Alexa at position 0:

Steven Bob Cynthia Ben

0 1 2 3 4 5 6

Alexa Steven Bob Cynthia Ben

0 1 2 3 4 5 6

Now suppose we want to add Jackie to the table. She
hashes to 4, so she collides with Cynthia. Note that this
is a new kind of collision. No one else in the table has
the same hash value as Jackie, but she collides because
Cynthia was moved away from the index she hashed to.

We resolve this collision in the same way as before and
put Jackie at index 5.

Alexa Steven Bob Cynthia Jackie Ben

0 1 2 3 4 5 6

Now suppose we want to determine if Cynthia is in the
table. She hashes to 2, which is occupied by someone
else. But of course she could have collided with the
person at index 2 (as she did) so we look to the right.
She isn't at index 3, but she is at index 4. We can find
items in the table even if they have moved because of a
collision.

Alexa Steven Bob Cynthia Jackie Ben

0 1 2 3 4 5 6

Now let's see if Chris is in the table. He hashes to index
3. Slots 3, 4, 5, and 6 are all occupied with someone
other than Chris. We can't move to the right from index
6, so we wrap around to index 0. That slot is also
occupied, but the next slot, at index 1, is not. If Chris
was in the table he would have been at index 1, if not in
one of the slots we examined earlier, so we can be
certain that he is not in the table

Alexa Steven Bob Cynthia Jackie Ben

0 1 2 3 4 5 6

Consider what would happen if we removed Bob from
the table. If we then searched for Cynthia, who hashes
to 2, we would see that slot 2 is filled with someone else,
but slot 3 was vacant. We would erroneously conclude
that Cynthia was not in the table. Rather than actually
removing Bob, we need to either replace it with a token
"something used to be here" marker or else set a flag in
the Bob entry that says it has been removed.

There are two standard approaches to resolving
collisions -- open addresses and chaining. With open
addresses we move through the table looking for open
slots to insert items that collided with previous entries.

With chaining, which we will get to in a few minutes,
each entry of the table is a list of all of the items that
hash to that index.

The simplest version of open addressing is "linear probing",
which is exactly what we have just described. To insert an
item, get its hash value and go to that entry of the table. If
that entry is empty, that is where you insert the item. If it is
not empty, go to the next entry of the table; if it is empty
insert the item there. Continue this process, wrapping from
the end of the table to the beginning, until you have found
a place to insert the new object. If there is an empty entry
in the table, this will find it.

To search for an item you must repeat this process. Start at
the index given by the hash value for the object. If that is
not the object you are seeking, go to the next object, the
next, and so forth. If you get to a vacant spot without
finding your object it is not in the table.

Clicker Question: I want to add, in order, the following
words to a hash table of size 11:

Item hashCode%size

one 7

two 5

three 4

four 5

At what index does "four" end up?
A. 3
B. 4
C. 5
D. 6

Another: I want to add, in order, the following words to a
hash table of size 11:

Item hashCode%size

one 7

two 5

three 6

four 5

At what index does "four" end up?
A. 5
B. 6
C. 7
D. 8

Once more, this time with table of size 7:

Item hashCode%size

one 0

two 6

three 6

four 0

At what index does "four" end up?
A. 0
B. 1
C. 2
D. 3

Most hash functions tend to have clusters of objects that
have similar hash values. This can result in large
sequential blocks of the hash table that are filled even
when the table itself is nowhere near capacity. If you seek
an object that hashes to the start of such a block you end
up doing a linear search through the block looking for your
object. This is bad, since the whole point of hashing is to
get constant-time lookups.

Another collision resolution scheme, which many
prefer, is called quadratic probing. Suppose an object
hashes to index n. Linear probing considers entries n,
(n+1), (n+2) etc. until either the object or an empty
entry is found. Quadratic probing considers locations
n, (n+1), (n+4), (n+9) etc. In general, linear probing
looks at locations (n+i), while quadratic probing looks
at (n+i2).

It is obvious that if the table is not completely full then
linear probing will eventually find a spot to insert any
new item. This is not so obvious with quadratic probing.
However, we can say this:

If the table size is prime and if the table is no more than
half full, then quadratic probing will find an empty
location for any insertion.

The proof of this is a little game with number theory:

Suppose the sequence n, n+1, n+4, n+9, ... repeats
itself. This means we have values i and j with

n+i2 = n+j2 (mod Size)

Then i2 = j2 (mod Size)
i2-j2 = 0 (mod Size)

(i-j)(i+j) = 0 (mod Size)

This means that (i-j)(i+j) is a multiple of Size. If i and j
are different and both no more than Size/2, this can't
happen because Size is prime. So the first Size/2
entries of the sequence must all be different. If the
table is no more than half full, one of these locations
must be an open slot.

So far we have been discussing Hash Tables -- data
stored by hashing into a table. A HashMap is a
simple extension of this. As with all maps, we
have a <Key, Value> pair. Both key and value are
stored in the entries of the table, at a location
determined by the hashCode of the key. To look
up a value in the table we do a search on the key;
when we find it we return the corresponding
value.

